Safety and survivability of naval vessels
Most modern warships have high power radar and radio equipment that require significant safety precautions. [1] Aircraft carriers and warships operating helicopters also offer the danger of being run over by aircraft, sucked into jet engines or cut in half by a snapped arresting wire.
These hazards are present in peacetime, when the sea is both friend and foe. In active warfare, natural and “friendly” threats are joined by other people using their best ability to do more damage than the sea.
No man will be a sailor who has contrivance enough to get himself into a jail; for being in a ship is being in a jail, with the chance of being drowned. a man in a jail has more room, better food, and commonly better companyBeyond the measures prescribed for civilian vessels by the Safety of Life at Sea convention, warships need specialized protective systems as well as procedures for safe handling of things designed to blow up and break things.
From the mid nineteenth to the mid twentieth century, warships relied on passive armor to limit damage. While there is still selective use of armor,
cards against humanity best expansion, usually ceramic or Kevlar rather than steel, the increased lethality and accuracy of modern weapons has diminished the value of armor. Instead, passive protection is more associated with low observability and not being hit.
Modern passive protection from kinetic damage
In general, warships are most concerned about being struck by a torpedo or mine, which explode below the waterline, than from shells or bombs. Underwater explosions let water in, while hits above the waterline will provide a path for air unless they spread fire, or penetrate deeply enough to create holes below the waterline.
Newer ships have mechanical shock protection. In the Gulf War, the cruiser USS Princeton (CG 59) and the Landing Platform Helicopter USS Tripoli (LPH 10) survived mine explosions that would have snapped WWII ships in half.
Burke class destroyers have considerable Kevlar protection around critical parts of the superstructure. Navy standard “material conditions” are representative of the tradeoffs between convenience and ship integrity:
Condition X (X Ray) is appropriate for in port operations or at sea operations in good weather, and, in both cases, when there is no immediate threat of attack.
Condition Y (Yoke) is the usual at sea condition, or wartime in port condition.
Condition Z (Zebra) is the standard for battle, entering or leaving port under threat conditions,
online cards against humanity, or other situations judged hazardous by the Officer of the Deck or the Commanding Officer. Modifications to condition Zebra may be made when extra mobility is needed during a specific activity, such as transferring stores from an aircraft (vertical replenishment) or from a ship moving alongside (underway replenishment)
Chemical, biological and radiological protection
While watertight integrity can be adequate, at least in surface vessels submariners say there is no such thing as a minor leak while submerged complete gas tight sealing, as well as the shutdown of ventilation systems, may be necessary if there is a threat from inhalation. Even tighter than condition ZEBRA is CIRCLE WILLIAM, the condition to be set under CBR conditions. While the sail handling crew often took pride in running along the spars to which sails were attached, or scrambling up masts, modern standards call for the use of safety harnesses and restraints.
Not only can one fall from a high mast, there are falling hazards through hatches, ventilators, and large open areas such as engine rooms. Again, unless the situation is desperate, if working over anything where there is a significant drop, harnesses should be worn; if near the water, life jackets are also appropriate, as well as a rule never to work alone.
In the presence of strong radio signals, especially in the very high frequency (VHF) and lower frequency range, metal cables, or any metal object long enough to act as an antenna, can be a shock or burn hazard.
Other than in desperate emergency conditions, the power to all antennas, where a crew member is to go aloft, should be physically disconnected. The sailor going aloft may put a safety lockout through the power switch and keep the key. Even receiving antennas can be dangerous if they can rotate, and hit a sailor with considerable force.
Hazard of Electromagnetic Radiation to Ordnance (HERO)
The high intensity RFR fields produced by electromagnetic transmitting equipment can cause sensitive electrically initiated devices (EIDs), also called electro explosive devices (EEDs), internal to ordnance to actuate prematurely. RFR energy may enter an ordnance item through a hole or crack in its skin or through firing leads, wires, and so on. The greatest hazards tends to be when connections are made or broken, either by mechanical disconnection or electrical switching; a surge in a power supply switch triggered the USS Forrestal catastrophe; the safety mechanisms protecting the ordnance had been disabled.
Other electrical problems can affect ordnance. As shown in the images of the Forrestal fires,
cards against humnity, 134 men were killed and 161injured,
cards against humanity game online, started when an Zuni air to ground 5″ rocket, aboard an F 4 Phantom II fighter, piloted by Jim Bangert fired, when it was switched from external to internal electrical power. [2] The rocket and its launching triple ejector rack each had a separate electrical connector that enabled the rocket to be launched. The two arming connectors were to be inserted, under standard operating procedures, only when the aircraft was on the catapult, weapons aimed in a safe direction. To improve speed, the ship’s Weapons Coordination Board (WCB) approved the early insertion of one of the pins.
Unfortunately, that connector was the second of the two. Each group assumed that the other pin was not yet installed, so the fighter was moved along the deck with both arming pins in place. Marine Corps is that every Marine, of every rank and skill, is always qualified as a rifleman. Navy had already had a strong tradition of training in damage control, but these incidents led to a tradition that every sailor is always qualified as a firefighter.